Visbreaker Simulation and Tutorial

A self-paced MultiMedia based Tutorial/CBT and real-time dynamic simulation of a Visbreaker Unit.

Tutorial/CBT:

This interactive tutorial provides an Overview, Fundamental Principles, and Control and Operating Principles for a Visbreaker unit using Voice, Video, Animation and Graphics.

Overview
- Introduction
- Importance of the Visbreaker Unit
- Process Overview

Visbreaker Components
- Feed Surge Drum and Preheat
- Cracking and Soaking
- Quench and Preflash
- Fractionator
- Vacuum Flasher
- Additives

Principles of Visbreaking
- Heavy Oil Structure and Characterization
- Cracking Chemistry and Viscosity Reduction
- Conversion and Yields
- Vacuum Systems
- Stability of Visbreaker Residual Product
- Process Enhancements and Alternate Designs

Key Controlled and Operating Variables
- Feed Quality
- Cracking Temperature
- Residence Time and Soaker Pressure
- Quench and Flash Temperature
- Fractionator Overhead Temperature and Pressure
- Vacuum Flasher Pressure and Distillate Flow
- Product Draw Rates
- Commissioning the Vacuum Flasher
- Introduction of Charge
- Stabilization at Normal Operating Conditions

Startup Operations
- Introduction and Preparation
- Unit Pressurization and Cutter Stock Circulation
- Commissioning the Heater
- Commissioning the Fractionator

Shutdown Operations
- Introduction
- Reduce Heater Outlet Temperature and Charge Rate
- Shutdown of the Heater and Separation Columns
- Empty and Purge
- Emergency Shutdown

Troubleshooting
- Fouling of Preheat Exchangers
- Furnace Coking
- Soaker Coking
- Non-uniform Operation in Heater Tubes
- Foaming in the Cyclone or Fractionator
- Fractionator Coking
- Vacuum Flasher Coke Fouling
- Filter Plugging and Toluene Insolubles

- Tutorial has a built-in Quiz and comes with a Learning Management System (LMS) called TutAdmin. The LMS allows an instructor to register trainees and monitor their performance and Quiz scores
- Tutorial is available as a Standalone or Web based application
- Available in English, Chinese, Danish, Dutch, French, German, Spanish and Swedish

GSE Systems
www.gses.com/EnVision
Simulation

GSE’s EnVision simulation is a real-time dynamic process simulation program used for Operator Training. It is based upon a rigorous and High-Fidelity mathematical process model to provide a realistic dynamic response of a process unit.

The Simulator allows a Trainee to Practice:

- Startup and Shutdown Operations
- Normal Operations
- Emergency Shutdown Operation
- Control Exercises
- Troubleshoot and practice recovery from Equipment, Instrument, and Control Valve Malfunctions

Major Units:

- Surge Drum
- Furnace & Soaker Drums
- Fractionator
- Vacuum Flasher

Key Operating Variables:

- Feed: 160 M3/H (24 MBPD)
- Wet Gas: 3200 NM3/H (110 MSCFH)
- Cracked Naphtha: 10.2 M3/H (1.5 MBPD)
- Cracked Gasoil: 24.3 M3/H (3.6 MBPD)
- Cracked Vacuum Distillate: 29.8 M3/H (4.5 MBPD)
- Vacuum Flasher Bottoms: 102.6 M3/H (15.4 MBPD)
- Cutter Stock: 20 M3/H (3 MBPD)
- Vacuum Visbroken Residue: 122.6 M3/H (18.4 MBPD)
- Furnace Outlet Temperature: 450°C (840°F)
- Soaker Drum Pressure: 10 BAR (145 PSIG)
- Fractionator Top Pressure: 1.8 BAR (25 PSIG)
- Fractionator Bottom Temperature: 374°C (705°F)
- Vacuum Flasher Top Pressure: 30 mBARA (0.9 INHG ABS)

- Simulation comes with a Learning Management System (LMS) called SimAdmin that allows an instructor to register trainees and monitor their performance
- Simulation is available as Standalone (Single or Dual Monitor) and Instructor-Trainee versions

GSE SYSTEMS
Your performance improvement partner
GSE Systems, Inc.
1332 Londontown Boulevard,
Suite 200, Sykesville, Maryland 21784 USA
T: +1 410.970.7800
T: 800.638.7912 (U.S. only)
F: +1 410.970.7997
E: envisioninfo@gses.com
www.gses.com