HF Alkylation Simulation and Tutorial

A self-paced MultiMedia based Tutorial/CBT and real-time dynamic simulation of an HF Alkylation Unit.

Tutorial/CBT:

This interactive tutorial provides an Overview, Fundamental Principles, and Control and Operating Principles for an HF Alkylation Unit using Voice, Video, Animation and Graphics.

Overview
- Introduction
- Importance of HF Alkylation Unit
- Key Reactions
- Process Overview
- Fractionation Schemes

Alkylation Reactions
- Key Chemical Reactions
- Detailed Reactions
- Additional Reactions

HF Alkylation Unit Components
- Feed System
- HF Alkylation Reactor
- Acid Regeneration
- Acid Dump System
- Fractionation
- Product Treating

Key Controlled and Operating Variables
- Feed Flow Control
- Feed Drying
- Isobutane to Olefin Ratio
- Acid Strength
- Water in Acid Phase
- Reactor Temperature
- Contact Time
- Acid to Hydrocarbon Ratio
- Alkylate Specifications

Safety Systems
- Safety System
- Water Spray Systems
- Acid Inventory
- Relief and Emergency Dump System
- Metallurgy and Corrosion Issues

Startup Operations
- Pre-Startup Check
- Hydrocarbon Circulation
- Acid Addition
- Olefin Addition

Shutdown Operations
- Introduction
- Feed and Acid Regenerator
- Acid and Hydrocarbon Removal
- Isostripper, Depropanizer and HF Stripper Shutdown

Troubleshooting
- Loss of Feed
- High Water Content in Acid
- Low Acid Concentration
- High Acid Consumption
- High Acid Carryover to Fractionation
- Reactor Acid Runaway
- Product Quality
- HF Acid Leak in Reactor-Acid Settler
- Loss of Cooling Water

The actual end point can vary slightly from these depending on the water content of the acid phase. A very low water content in acid, such as less than 1 wt % results in poor solubility and lower mass transfer for Alkylation reactions. Hence it generally produces higher end point Alkylate.

- Tutorial has a built-in Quiz and comes with a Learning Management System (LMS) called TutAdmin. The LMS allows an instructor to register trainees and monitor their performance and Quiz scores.
- Tutorial is available as a Standalone or Web based application.
- Available in English, Chinese, Danish, Dutch, French, German, Spanish and Swedish.

GSE Systems
www.gses.com/EnVision
Simulation

GSE’s EnVision simulation is a real-time dynamic process simulation program used for Operator Training. It is based upon a rigorous and High-Fidelity mathematical process model to provide a realistic dynamic response of a process unit.

The Simulator allows a Trainee to Practice:

- Startup and Shutdown Operations
- Normal Operations
- Emergency Shutdown Operation
- Control Exercises
- Troubleshoot and practice recovery from Equipment, Instrument, and Control Valve Malfunctions

Major Equipment:

- Feed Driers
- Alkylation Reactor
- Acid/Hydrocarbon Settler
- Acid Regenerator
- Isostripper

N-Butane Rectifier
Depropanizer
HF Stripper
Defluorinators
KOH Treaters

Key Operating Variables:

- Olefin Feed: 28.1 M3/H (4.2 MBPD)
- Make-up Isobutane: 7.1 M3/H (1.1 MBPD)
- Isobutane Recycle: 158.0 M3/H (24.0 MBPD)
- Alkylation Reactor
 - Temperature: 32.1 °C (89.8 °F)
 - IC4 to Olefin Ratio: 10.0
 - Acid to Hydrocarbon Ratio: 1.3
 - Acid Strength: 89.2 Weight Percent
 - Reactor Pressure: 15.6 BAR (226.0 PSIG)
- Acid Regenerator Feed: 2.0 M3/H (0.3 MBPD)
- Isostripper Pressure: 9.9 BAR (144.0 PSIG)
- Alkylate Product: 26.0 M3/H (3.9 MBPD)
- Depropanizer Feed: 10.2 M3/H (1.5 MBPD)
- Depropanizer Pressure: 18.0 BAR (261.0 PSIG)
- Deprop Bottom Recycle: 8.1 M3/H (1.2 MBPD)
- HF Stripper Feed: 4.7 M3/H (0.7 MBPD)
- Propane Product: 1.9 M3/H (0.3 MBPD)

Simulation comes with a Learning Management System (LMS) called SimAdmin that allows an instructor to register trainees and monitor their performance.

Simulation is available as Standalone (Single or Dual Monitor) and Instructor-Trainee versions.

EnVision™ is a trademark of GSE Systems, Inc. All other trademarks are the property of their respective owners. The information in this literature is subject to change without notice and is not to be construed as a warranty.